(1985), are intermediate between the locations derived from neutron data.
The uranium atom presents a hexagonalbipyramidal coordination (Table 2). The uranyl ion lies on a threefold axis imposing an uncommon exact linear configuration. It is surrounded by six coplanar oxygen atoms of three acetate ligands. Table $3(b)$ shows the quasi-planarity of the uranyl equatorial plane and a small shift of the uranium and carbon atoms on both sides of this plane.

The six-coordination polyhedron around sodium, based on the site symmetry C_{3}, is formed by two independent triangles of oxygen atoms, O 3 and O 4 . It can be considered as intermediate between an octahedron and a trigonal prism (the rotation angle around the threefold axis between the two triangles is 30°). The six oxygen atoms belong to six different
acetate ligands and each of them is shared between two sodium atoms. Fig. 2 shows the crystal packing.

We would like to thank Dr A. Dejean for preparing suitable crystals.

References

Charpin, P., Dejean, A., Folcher, G., Rigny, P. \& Navaza, A. (1985). J. Chem. Phys. 82, 925-932.

Fankuchen, I. (1935). Z. Kristallogr. 91, 473-479.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Templeton, D. H., Zalkin, A., Ruben, H. \& Templeton, L. K. (1985). Acta Cryst. C41, 1439-1441.

Zachariasen, W. H. \& Plettinger, H. A. (1959). Acta Cryst. 12, 526-530.

Dichloro\{1-[(2-methylphenylimino)methyl]-2-naphtholato\}diphenyltin(IV): a 1:1 Molecular Adduct Formed by the Interaction of Diphenyltin(IV) Dichloride with \boldsymbol{N}-(o-Substituted phenyl)-2-hydroxynaphthylmethyleneamine

By Hoong-Kun Fun
School of Physics, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia
and Soon-Beng Teo, Siang-Guan Teoh* and Guan-Yeow Yeap
School of Chemical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia

(Received 16 August 1990; accepted 6 February 1991)

Abstract

Sn}\left(\mathrm{Cl}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}\right)\right], M_{r}=605 \cdot 13\), monoclinic, $P 2_{1}, a=9.586$ (2), $b=14.269$ (2), $c=$ 9.765 (3) $\AA, \beta=97.53(1)^{\circ}, V=1324.2$ (6) $\AA^{3}, Z=2$, $D_{x}=1.518 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Мо $K \alpha)=0.71069 \AA, \quad \mu=$ $1.085 \mathrm{~mm}^{-1}, \quad F(000)=608, T=298 \mathrm{~K}, \quad R=0.0700$ for 2447 observed reflections. The compound crystallizes in the form of an adduct with the organotin and ligand in a $1: 1$ stoichiometry. The Sn atom in the title compound possesses trigonal bipyramidal geometry, with the phenolic O atom of the Schiff base and one Cl atom occupying the axial positions. The other Cl atom and the two phenyl rings occupy the equatorial positions.

Introduction. Whilst a large number of molecular adducts of organotin halides and 2-hydroxynaphthylmethyleneanilines, having different substituents

[^0]0108-2701/91/091845-03\$03.00
in the aniline fragment, have been synthesized, crystallographic studies on the compounds have only recently been carried out (Charland, Lee, Gabe, Khoo \& Smith, 1987; Khoo, Charland, Gabe \& Smith, 1987). These studies, however, involve adducts with para-substituted anilines. To date there has been no known report on the corresponding molecular adducts with Schiff bases having ortho-substituted anilines. In view of the above, the $1: 1$ molecular adduct of diphenyltin(IV) dichloride and N-(o-substituted phenyl)-2-hydroxynaphthylmethyleneamine was synthesized and a full X-ray structural investigation carried out.

Experimental. o-Toluidine was purified before being used. The other reagents, 2-hydroxy-1-naphthaldehyde and diphenyltin(IV) dichloride, were utilized without further purification.

The Schiff base was prepared by direct condensation of 2-hydroxy-1-naphthaldehyde and o-toluidine in 95% ethanol and was purified by recrystallization from dichloromethane.

The complex was obtained by adding an equimolar amount of the ligand to diphenyltin(IV) dichloride in dichloromethane. The resulting product was filtered and then recrystallized from dichloromethane. Weissenberg and Buerger precession photographs yielded approximate cell dimensions and showed a monoclinic system with space group $P 2_{1}$ from systematic absence $0 k 0, k=2 n+1$. Data collection on a crystal of dimensions $0.3 \times 0.4 \times$ 0.2 mm was obtained with a Syntex $P 2_{1}$ diffractometer using the $2 \theta / \theta$ mode in the index ranges $(0<h$ $<10,0<k<15,-10<l<10$) to the 2θ limit of 53°. A variable scan speed of $5 \cdot 0-29 \cdot 3^{\circ} \mathrm{min}^{-1}$ was used. Lattice parameters refined using 25 reflections in the range $29<\theta<35^{\circ}$. Standard reflection 110 checked every 50 reflections: no significant deviation. The data were corrected for Lorentz and polarization effects. 2824 reflections were collected, 2634 unique ($R_{\text {int }}=0.1700$), of which 2447 observed reflections with $I>2.5 \sigma(I)$ were used for refinement of the structure. The structure was solved using SHELXS86 (Sheldrick, 1986) with $R(E)=0.26$ and refined by the full-matrix least-squares procedure based on F through SHELX 76 (Sheldrick, 1976). Coefficients of scattering factors for all the atoms inlaid in SHELX76. Structure determination and refinement performed on an IBM4361/4381. Anisotropic thermal factors for all the non- H atoms, isotropic for H atoms. H atoms were fixed ($\mathrm{C}-\mathrm{H}$ $0.96 \AA$) and made riding. In order to correct the observed structure factors for absorption effects, ABSORB (Ugozzoli, 1987) was used (correction factors min.-max.: 0.9365-1.0655). The final agreement factors were $R=0.0704, w R=0.0691$. For completeness, the opposite enantiomorph was also refined and convergence was attained at $R=0.0700, w R=$ 0.0683 . The ratio of $w R$ factors (1.012) is greater than the value of 1.002 required for the Hamilton (1965) R-factor ratio at a probability level of $99 \cdot 5 \%$. The preferred chirality was chosen as the one having the lower R value. Weights for the observed structure factors calculated according to $w=1 /\left[\sigma^{2}(F)+\right.$ $\left.0.015834 F^{2}\right], \quad(\Delta / \sigma)_{\max }=0.098, \quad \Delta \rho_{\max }=1.38$ and $\Delta \rho_{\text {min }}=-1.62 \mathrm{e} \AA^{-3}$. Geometrical calculations performed with XANADU (Roberts \& Sheldrick, 1975) and illustrations drawn with PLUTO (Motherwell, 1978). Scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV).

Discussion. Diphenyltin(IV) dichloride has been known to form 1:2 molecular adducts with salicylideneanilines or 2 -hydroxynaphthylmethylene-

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and $B_{\text {eq }}\left(\AA^{2}\right)$ values for non- H atoms with e.s.d.'s in parentheses

$$
B_{\mathrm{eq}}=8 \pi^{2}\left(U_{11}+U_{22}+U_{33}\right) / 3
$$

	x	y	z	$B_{\text {eq }}$
SnI	-1034 (1)	0	-8561 (1)	3.80
Cl1	-454 (4)	-1662 (2)	-8100 (4)	6.39
Cl 2	-2365 (3)	31 (3)	-6709 (3)	$5 \cdot 47$
C22	-3630 (6)	64 (7)	-10772 (7)	$4 \cdot 78$
C23	-4405 (6)	-131 (7)	- 12052 (7)	5.73
C24	-3820 (6)	-680 (7)	-13012 (7)	6.18
C25	-2461 (6)	-1035 (7)	-12693 (7)	6.47
C26	- 1686 (6)	-841 (7)	-11413 (7)	4.37
C21	-2271 (6)	-292 (7)	-10453 (7)	3.91
C32	1449 (8)	1329 (5)	-8813 (9)	5.18
C33	2852 (8)	1614 (5)	-8689 (9)	7.72
C34	3901 (8)	1051 (5)	- 7987 (9)	6.62
C35	3548 (8)	204 (5)	-7409 (9)	8.86
C36	2145 (8)	-81 (5)	-7533 (9)	$5 \cdot 54$
C31	1096 (8)	481 (5)	-8236 (9)	$4 \cdot 28$
O1	- 1754 (8)	1487 (5)	-8913 (7)	$4 \cdot 28$
Cl	-1631 (12)	2261 (8)	-8190 (11)	4.31
C2	-935 (13)	2249 (8)	-6797 (11)	4.75
C3	-784 (13)	3031 (9)	-6073 (10)	4.79
C4	- 1218 (12)	3944 (8)	-6609 (11)	$4 \cdot 36$
C5	-972 (14)	4767 (10)	- 5845 (12)	5.47
C6	- 1291 (14)	5595 (9)	-6395 (15)	$5 \cdot 36$
C7	-1888 (13)	5666 (10)	- 7779 (15)	5.30
C8	- 2174 (10)	4881 (8)	-8556 (10)	4.04
C9	-1871 (10)	3988 (8)	- 7968 (10)	3.65
C10	-2111 (9)	3114 (7)	-8779 (9)	3.47
Cll	-2907 (10)	3135 (7)	-10095 (9)	3.63
N1	-3092 (9)	2420 (6)	-10908 (7)	2.95
Cl 2	- 3973 (10)	2387 (7)	- 12207 (9)	3.90
C13	- 5309 (12)	2788 (8)	-12311 (13)	4.79
C14	-6200 (15)	2708 (13)	-13521 (14)	6.47
C15	- 5711 (18)	2292 (12)	- 14652 (17)	6.96
C16	-4426 (14)	1913 (9)	-14504 (11)	$5 \cdot 26$
C17	-3507 (11)	1960 (7)	-13312 (9)	3.98
C18	-2070 (13)	1555 (10)	-13215 (13)	$5 \cdot 26$

Fig. 1. A perspective view of the molecule.
anilines having para-substituents in the aniline fragment (Srivastava \& Chauhan, 1977; Saraswat, Srivastava \& Mehrotra, 1979; Kamwaya \& Khoo, 1985).

Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses for non -H atoms

Cl -Snl	2.464 (3)	C8-C7	1.360 (17)
$\mathrm{Cl} 2-\mathrm{Snl}$	$2 \cdot 346$ (2)	C9-C8	1.413 (15)
C21-Sni	$2 \cdot 102$ (6)	$\mathrm{ClO}-\mathrm{C} 9$	1.479 (13)
C31-Snl	$2 \cdot 138$ (7)	$\mathrm{Cll}-\mathrm{ClO}$	1.407 (13)
$\mathrm{Ol}-\mathrm{Snl}$	2.244 (7)	$\mathrm{Nl}-\mathrm{Cll}$	1-291 (12)
$\mathrm{Cl}-\mathrm{Ol}$	1.307 (13)	C12-N1	1.429 (10)
$\mathrm{C} 2-\mathrm{Cl}$	1.434 (15)	$\mathrm{Cl} 3-\mathrm{Cl} 2$	1.394 (15)
$\mathrm{Cl} 10-\mathrm{Cl}$	$1 \cdot 398$ (15)	C17-C12	1.363 (14)
C3-C2	1.319 (17)	$\mathrm{C} 14-\mathrm{Cl} 3$	$1 \cdot 369$ (16)
C4-C3	1.444 (16)	C15-C14	1.388 (23)
C5-C4	1.395 (17)	C16-C15	1.336 (20)
C9-C4	1.392 (15)	C17-C16	1.367 (14)
C6-C5	1.317 (20)	C18-C17	1.486 (17)
C7-C6	1401 (20)		
$\mathrm{Cl} 2-\mathrm{Sn} 1-\mathrm{Cl1}$	$90 \cdot 6$ (1)	C6-C5-C4	121.5 (10)
C21-Snl-Cll	$93 \cdot 3$ (3)	C7-C6-C5	$120 \cdot 2$ (11)
$\mathrm{C} 21-\mathrm{Snl}-\mathrm{Cl} 2$	$112 \cdot 3$ (2)	C8-C7-C6	120.4 (13)
C31-Snl-Cll	95.4 (2)	C9-C8-C7	120.0 (10)
$\mathrm{C} 31-\mathrm{Snl}-\mathrm{Cl} 2$	119.0 (2)	C8-C9-C4	118.1 (9)
C31-Snl-C21	127.7 (3)	C10-C9-C4	119.4 (9)
$\mathrm{Ol}-\mathrm{Snl}-\mathrm{Cll}$	174.7 (2)	C10-C9-C8	122.3 (9)
$\mathrm{Ol}-\mathrm{SnI}-\mathrm{Cl} 2$	85.0 (2)	$\mathrm{C} 9-\mathrm{Cl0}-\mathrm{Cl}$	119.6 (8)
$\mathrm{O} 1-\mathrm{Snl}-\mathrm{C} 21$	$85 \cdot 8$ (3)	$\mathrm{C} 11-\mathrm{Cl} 0-\mathrm{Cl}$	120.3 (9)
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 31$	89.3 (3)	$\mathrm{C} 11-\mathrm{Cl0}-\mathrm{C} 9$	119.9 (9)
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{Sn} 1$	121.8 (1)	$\mathrm{N} 1-\mathrm{Cl1-Cl0}$	1240 (9)
C26-C2I-Sn1	118.2 (1)	$\mathrm{Cl} 2-\mathrm{N} 1-\mathrm{Cll}$	126.1 (8)
C32-C31-Sn!	119.8 (2)	$\mathrm{Cl} 3-\mathrm{Cl} 2-\mathrm{N} 1$	118.8 (9)
C36-C31-Snl	120.1 (2)	$\mathrm{C17}-\mathrm{Cl} 2-\mathrm{Nl}$	1200 (9)
$\mathrm{Cl}-\mathrm{Ol}-\mathrm{SnI}$	135.4 (6)	$\mathrm{C} 17-\mathrm{Cl2-Cl3}$	121.2 (9)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{Ol}$	120.0 (10)	C14-C13-C12	119.5 (11)
$\mathrm{Cl} 0-\mathrm{Cl}-\mathrm{O} 1$	$120 \cdot 8$ (9)	C15-C14-C13	119.0 (13)
$\mathrm{Cl} 0-\mathrm{Cl}-\mathrm{C} 2$	119.2 (10)	C16-C15-C14	119.3 (13)
C3-C2-C1	120.2 (10)	C17-C16-Cl5	123.7 (13)
C4-C3-C2	124.2 (9)	C16-C17-C12	117.1 (10)
C5-C4-C3	123.0 (10)	$\mathrm{C} 18-\mathrm{Cl} 7-\mathrm{Cl} 2$	121.3 (9)
C9-C4-C3	117.3 (10)	$\mathrm{Cl} 8-\mathrm{Cl} 7-\mathrm{Cl} 6$	121.6 (10)
C9-C4-C5	119.7 (11)		

In the present compound, where the substituent is in the ortho position, a $1: 1$ adduct is formed.
The molecular structure of the compound and the numbering scheme are shown in Fig. 1. Final atomic coordinates are shown in Table 1* while bond distances and angles are given in Table 2.
The title compound has a trigonal bipyramidal geometry about the Sn atom, with one Cl atom lying in the equatorial plane while the phenolic O atom of the ligand and the remaining Cl atom occupy the axial positions. The $\mathrm{C}(21)-\mathrm{Sn}-\mathrm{C}(31)$ angle

[^1][127.7 (3) $)^{\circ}$] is observed to be larger than the average $\mathrm{C}(\mathrm{Ph})-\mathrm{Sn}-\mathrm{Cl}(2)$ angle $\left[115 \cdot 6(2)^{\circ}\right]$. This may be attributed to the stronger repulsion between the two phenyl rings compared to that incurred by $\mathrm{Cl}(2)$ and $\mathrm{C}(\mathrm{Ph})$.
The $\mathrm{Sn}-\mathrm{Cl}(2)$ bond length $[2.346$ (2) \AA] is shorter than $\mathrm{Sn}-\mathrm{Cl}(1)[2.464$ (3) $\AA]$. This feature can be explained by looking at the average $\mathrm{C}(\mathrm{Ph})-\mathrm{Sn}-$ $\mathrm{Cl}(2)$ angle $\left[115.6(2)^{\circ}\right]$ which is larger than the average $\mathrm{C}(\mathrm{Ph})-\mathrm{Sn}-\mathrm{Cl}(1)$ angle [94.4 (3) ${ }^{\circ}$]. Hence the $\mathrm{Cl}(1)$ atom which is situated closer to the phenyl rings is subject to stronger repulsive forces.
The Schiff base is coordinated to the Sn atom in the form of a zwitterion similar to that reported for similar Schiff bases (Bullock, Lad, Povey \& TajmirRiahi, 1979; Kamwaya \& Khoo, 1985). The O(1)$\mathrm{H}(N 1)$ distance $(1.829 \AA)$ is characteristic of an intramolecular hydrogen bond. The $\mathrm{Sn}-\mathrm{O}$ bond distance of 2.249 (7) \AA is in accord with that reported for 1-[(4-methylimino)methyl]-2-naphtholtin(IV) (Khoo et al., 1987).

The authors thank the Malaysian Government and Universiti Sains Malaysia for financial support (R\&D Grant No. 123-3203-2504).

References

Bullock, J. I., Ladd, M. F. C., Povey, D. C. \& Tajmir-Riahi, H. A. (1979). Acta Cryst. B35, 2013-2020.

Charland, J. P., Lee, F. L., Gabe, E. J., Khoo, L. E. \& Smith, F. E. (1987). Inorg. Chim. Acta, 130, 55-60.

Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Kamwaya, M. E. \& Khoo, L. E. (1985). Acta Cryst. C41, 1027-1029.
Khoo, L. E., Charland, J. P., Gabe, E. J. \& Smith, F. E. (1987). Inorg. Chim. Acta, 129, 139-145.
Motherwell, W. D. S. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Roberts, P. \& Sheldrick, G. M. (1975). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.
Saraswat, N. S., Srivastava, G. \& Mehrotra, R. C. (1979). J. Organomet. Chem. 164, 153-158.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Srivastava, T. N. \& Chauhan, . K. S. (1977). J. Inorg. Nucl. Chem. 39, 371-373.
Ugozzoli, G. (1987). Comput. Chem. 2, 109-120.

[^0]: * Author to whom all correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and bond lengths and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53980 (15 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

